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ABSTRACT 

Sharp L p boundedness results are proven for pseudo-differential operators 
in the class S~na. 

We show how some recent results in [1] yield sharp L p estimates for pseudo- 

differential operators in H/Srmander's class S;~. Recall that pseudo-differential 

operators have the form T f ( x )  = a(x, D) f (x)  = fR n eiX �9 Ca(x, ~)f(~)d~, where 

^ denotes the Fourier transform. 

One imposes restrictions on the symbol a to get a manageable calculus of 

operators wide enough to include inverses of interesting differential operators. 

For example, to invert the heat operator in a class of pseudo-differential operators 

invariant under C ~ changes of coordinates, H6rmander posed the following 

condition. 

DEFINITION. A symbol a(x, 0 belongs to Sp% if 

0B 0r 
r = o(I r 

as [~1 ~ 0% for all multi-indices a, 1. 

The norm of a symbol in S~ is 

l a l =  -- 

where k, N > n/2. 

sup ~xaB 0~ ~l) -m+l~lp-lala, 
I~1~k ~ a(x,r +] 
/t~l_~N 
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An operator T = a(x,D) with aeS},"~ has order m on L 2 for 0 _<_ ~5 < p <1.  

(cf. [3]). That is, T: L~(R~)~ L2_m(R~), where L~ is the space of functions (or 

distributions) with s'th derivatives in L' .  Since ] a(x, ~)1 = O(l ~1"), this is entirely 

reasonable. However, a remarkable example of  Hardy-Littlewood [7], Hirsch- 

man [2] and Wainger [6] shows that on LP(p r 2), a(x, D) can have "order"  

m' = m ' ( p , & p , m )  strictly greater than m. In other words T maps L~ not to 

L~-m, but only to Lr-m,. Our purpose here is to prove a sharp result on the L p 

orders of  pseudo-differential operators. 

THEOREM. 

a) Let a(x, 0 e S-~B_,,~(R ") with 0 < t5 < 1 - a < 1 and fl < na/2. 

Then tr(x, D) is bounded on L p for  

7 -  21-  [n/2 + 1 < Y = n [ / ~ + ~  J 

b) I f  [lip - 1/21 > 7, then the symbol 

, ~ = n a / 2 -  fl 
1 - a  

a ( x , ~ )  = ~ . p ( r  - - -  
ellr ~ 

1 + lel s;'-~176 

provides an operator a,B(D ) unbounded on L p. 

c) Let a(x, 4) ~ ~-n"/2 ~,1-,~ , so that the critical L p space is I_2. A l thougha(x ,D) is  

unbounded on D,  it is bounded on the Hardy space 1-11. (See [5] for  a definition 

of H 1 in n variables.) 

This result was partly known before. Part (b) is the counterexample of  Hardy- 

Littlewood-Hirschman-Wainger. Part (a) was proved in the noncritical case 

[1/p - 1/21 < ), by Hirschman and Wainger (for constant-coefficient symbols) 

and by H0rmander (for general symbols). However, for our purposes the basic 

real-variable property of  a 6 Sp'~ is part (c). From (c), (a) can be deduced in full 

strength from a (nontrivial) interpolation. The proofs of (a) and (c) require a new 

technique discovere:l recently by E. M. Stein and the author. At the heart of  our 

method lies the interesting class of functions of bounded mean oscillation (B.M.O.) 

defined by F. John and L. Nirenberg in [4]. A real-valued function f on R n 

belongs to BMO if the norm IlflI.MO-- supQ IlIQI YQIf(x) - avQfldxisfinite. 

Here Q denotes an arbitrary cube inR", and avQf = I/]Qi 5o. f (x )dx .  For 

many purposes, BMO is a natural substitute for L ~176 The results in [1] reduce 

(a) and (c) above to the following 
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c-~al2 for 0 < 6  < l - - a < 1 .  Then a(x,D) is a PROPOSITION. Let a(x, ~) ~ ~'l-a,~ = 

bounded operator from L ~ to BMO. 

In what follows, we content ourselves with proving the proposition and refer 

the reader to [1] for the new technique of using BMO. For the constant-coefficient 

case a(x, ~) = a(~), [1] proves both the proposition and the theorem. 

A simple special case of the Hardy-Littlewood-Sobolev theorem is useful in 

proving the proposition. 

LEMMA. For q(x,~) ~ S~_~/2, supported entirely in I ~] = < 1 or in r =< I ~l = < 3r, 

we have [l q(x, D ) f ll o~ <= C iI q ll~ ll f ll oo . 

PROOF. Say q is supported in r < 141 --- 3r. We have q(x,D)f(x)  -- #~*f(x), 

where 4:, is the Fourier transform of q~(~) = q(x, r Therefore I q(x,O)f(x)l 
--< II Ox 111 l l f l l ~ ' s ~  that if we show that [I q~ I[x < C I1 q Ils, the proof will be 

complete. Let b = r a-1. Then 

f (f ) I qx(Y)t dy < cb n/2 ~tx(y)[2dy <= cb,/2 ~]q(x,~)12d~ ,/2 
yl<b lYl < b 

___ c I1 q IIs (since q lives in I r  

and 

\Jlyl--> b 

(again since q lives in 141 - r). Thus I[ qx [1' < C I[ q [Is" Q.E.D. 

Now we can prove our proposition. Fix f 6 L oo and Q _ R n having side d and 
center x o . We have to show 

lfo (1) [Q[ ]a(x,D)f(x)-aaldx <- c[I/ll . 

Break up a(x, ~) into two parts, a = a ~ + a l, with a ~ supported in I ~ ] < 2d- 1, 
a '  supported in ]r > d - ' ,  and II a~ IIs, II al Ils < C II a [Is" Let us look first at a ~ 

We have (~/Oxj)a~ D)f(x) = a'(x,D)f(x) ,  where a'  is the symbol a'(x, ~) 

=(O/Oxj)a~ x, 0 + r176 x, 4). Writing a '  in any reasonable way as a'(x, ~) = 

~,f<=opj(x,~) with pj supported in Ir ~2-Jd-*, we discover from elementary 

computation that IlpJlls --- Cd-12-J~ ~11~. By the lemma, 
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~-fV:(x'D)Sll o~ z ,X~_oll ;,(x, o)s II ~ <= ca-~ ,_~oX 2-'c I1 ~ IIs Ilsll ~ 

z cd-~ II,,llsllsll~. 

Therefore, ] a ~  a(2 ] remains bounded in Q for some constant a~, 

so that 

(2) IQI I : ( x , D ) f ( x )  - %1 dx <= o 11 o-II~llsll~. 

This estimates the go contribution to (1). 

To handle the a ~ term, fix a "bump"  function ~b on R ", with 0 < q~ < 10, 

q~ > 1 on Q and q~ having "thickness" dl-" .  (Say ~ ( 0  is supported in [ ~l < d~- 1.) 

Then 

(3) $(x) " a l ( x ,O) f ( x )  = al(x,D)(dpf)(x) + [d?,at(x ,D)]f(x)  ,~, I + II.  

To estimate I, write al(x,D)(d~f) = (al (x ,D)  �9 j - , , , /2) .  (jna/2(~f)) where J is 

a Bessel potential, at(x,  D) �9 j-,,,,/2 is a pseudo-differential operator with symbol 

a l ( x , O  �9 (1 + l ~ l )  .~/z ~ s  ~ t-~,~, so that by H6rmander's L 2 result, 

Uo-'(~,~ox4,f) 112 ~ cll lo- Ill II : '~(4,f)  I1~ ~ c I1~,~ ll2llfll~l QI, 

since obviously .~~176 --< IIslIo" "'~ 'P I). Consequently, 

1 fQ 1 s  i~(x,O)(4~f)(x)l~dx) '/~ (4) IQ---/ I~'(x,o)(~s)(x)lax <- ( ( E  

c 11 ~ lls Ilfll~, which takes c a r e  of I. 

I I  can be written in the form O(x,D)f(x) ,  where 0 is the symbol 0(x,~) 
oo 0 =.fR" eW# 4~(q) [ ax (x, ~) - a I (x,~ - q)]dq. Write 0 = ]~j = o j in any reasonable way, 

with O~(x,O supported in ]~] ~2Jd  -~. Elementary calculations show that 

Iio, IIs ~ c.2-"ll~lls, so that by the lemma, II[~,:(x,O)]flloo <= X,:o IlOXx,D)fll 
oo C S 2"11,,[Isllflloo z cll , , l lsl lf l loo Patting this and (4) into (3) we 

obtain 1/Iol) f~l ~(x) .  ~l(x,O)f(x)l dx Z cll,~lls[Iflloo. Since l~(x)l->-- 1 on 
Q, we have (1/IQl) Y a l " ' ( x , O ) f ( x ) l d x  <= cl[,~llsllfLo. Together with (2), 

this proves (1). Q.E.D. 
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